2023年度《三角形面积计算》教案【10篇】(完整)

来源:教案设计 发布时间:2023-01-07 08:15:06 点击:

《三角形面积的计算》教案1  重点难点  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积  教学准备(含资料辑录或图表绘制)  教和学的过程  一、练习  二、总结  一、第5题下面是小编为大家整理的2023年度《三角形面积计算》教案【10篇】(完整),供大家参考。

2023年度《三角形面积计算》教案【10篇】(完整)

《三角形面积的计算》教案1

  重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  教和学的过程

  一、练习

  二、总结

  一、第5题

  可以通过计算解决,也可以把三角形的底和高与*行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题

  要使学生画出的三角形的面积是9*方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的*行四边形等底等高,所以每个涂色三角形的面积都是它所在*行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16*方厘米;中等三角形的面积是8*方厘米;每个小三角形的面积是4*方厘米;*行四边形和小正方形的面积是8*方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

  做练习

《三角形面积的计算》教案2

  教学内容:

  人教版第九册第三单元的《三角形面积的计算》。

  教学目的:

  (一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  (二)通过学生动手拼摆,渗透旋转、*移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

  教学重点:

  掌握三角形面积的计算方法。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教具准备:

  用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。

  教学过程():

  一、复习:

  提问:同学们,上节课我们学习了*行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?

  二、导入新课:

  你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?

  三、新课:

  (一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1*方厘米。

  下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。

  小结:通过数方格,我们得到了这三个三角形的面积都是12*方厘米,因此,它们的面积是相等的。

  那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。

  像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明

  师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积。板书:三角形面积的计算

  师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。

  (二)下面老师就请同学们拿出给你们准备的2个直角三角形 、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)

  那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?

  1、先用2个完全一样的直角三角形拼拼看?

  (长方形、*行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和*行四边形的面积,那我们就请拼成*行四边形的同学来演示,说说你是怎样拼的?(同学演示)

  我们一起来看一下电脑是怎样清楚地操作的?

  2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个*行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好

  3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(*行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个*行四边形)齐读 回答真好

  4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个*行四边形。

  想一想:1、每个三角形的面积与拼成的*行四边形的面积有什么关系? 2、这个*行四边形的底和高分别与三角形的底和高有什么关系?

  开始观察,观察好,同桌互相交流,后回答,屏幕演示。

  反馈提问:“为什么要除以2?”

  5、翻书P76,填充,齐读,同样我们也可以用字母面积公式

  板书:

  等底等高

  三角形的面积=*行四边形的面积÷2 表示什么意思

  =底×高÷2

  s=ah÷2

  (三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷ 2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。

  1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。

  2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。

  出示例:求的是什么?我们应根据什么?请同学们做在自备本上。

  3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。

  请看第1个题目:

  1、下面*行四边形的面积是12*方厘米,求出涂黄色部分的面积。

  2、判断,说明理由:(请用手势表示)

  2个三角形都可以拼成一个*行四边形。

  三角形底是6cm,高是3cm,面积是18cm。

  三角形底是8分米,高是40cm,面积是16*方分米。

  三角形底是9米,高是4米,面积是18米。

  从以上练习,你认为我们在计算三角形面积时应该注意些什么? 1、÷2

  2、单位统一

  3、面积单位

  3、选择:

  下列哪个三角形是4×3÷2=6*方cm。

  单位:厘米

  3 3

  4 4

  小结:我们在做求三角形面积时一定要注意……

  一个三角形的底是20厘米,高是2.5分米,它的面积是( )

  1、20×2.5÷2 2、20×2.5 3、20×25÷2

  小结:你认为在做作业时注意( )

  4、求每个三角形的面积(只列式不计算)

  底是4.2米,高是2米。

  底是3分米,高是20厘米。

  高是6米,高比底短2米。

  底是12米,高是底的一半。

  四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。

  你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。

  三角形的土地 一半 底 高

  学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?

  出示思考:

《三角形面积的计算》教案3

  编排意图

  教材以小组合作学习的形式展现学生探究的过程。首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题;接着根据*行四边形面积公式推导的方法提出解决问题的思路:把三角形也转化成学过的图形;通过学生动手操作和探索,推导出三角形面积计算公式。最后用字母表示出面积计算公式。

  教学建议

  (1)本部分教学可按提出问题、寻找思路、实验探究的步骤,以小组合作学习为主的形式进行。学生已经经历了*行四边形面积公式的推导过程,要以学生在推导中获得的经验为基础,放手让学生自主去探究。

  (2)学生动手操作实验环节是本部分教学的重点。按教材的编排,把三角形转化成已学过的图形,没有采用*行四边形的割补方法,而是用两个同样三角形拼摆的方法。这个方法推导过程简单,学生比较容易理解和掌握。每个小组最少应准备相同的直角三角形、锐角三角形、钝角三角形各两个,教师可提出明确的操作和探究要求:“用两个同样的三角形拼一拼,能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?”学生可能拼出三角形、长方形和*行四边形,其中长方形和*行四边形学生已经会计算面积。在小组操作和讨论的基础上组织交流。可以选择用直角三角形、锐角三角形、钝角三角形拼的三种情况分别进行汇报,要求学生能根据拼出的图形叙述出推导的过程。在此基础上作总结归纳:

  通过实验可以看到,两个完全一样的三角形都可以拼成一个*行四边形(或长方形),这个*行四边形的底等于三角形的底,这个*行四边形的高等于三角形的高,因为每个三角形的面积等于拼成的*行四边形面积的一半,所以可以推出

  三角形的面积 = 底 × 高 ÷ 2

  (3)根据学生的基础,也可以让学生用剪拼或折的方法进行推导,或结合教材第96页介绍的我国古代数学家刘徽的三角形面积计算方法,让学生进行推导,增强学生探究的兴趣,提高学生推理的能力。

  割补的方法一般有以下几种:

  ①

  拼成的*行四边形的底等于三角形的底,高等于三角形高的一半。

  ②

  拼成的长方形的底等于三角形的底,高等于三角形高的一半。

  三角形的面积 = 底 ×(高 ÷ 2)

  = 底 × 高 ÷ 2

  ③

  拼成的长方形的高等于三角形的高,底等于三角形底的一半。

  三角形的面积=长方形的面积

  =(底÷2)×高

  =底 × 高 ÷ 2

  折叠的方法:

  折出的长方形面积是三角形面积的一半,长和宽也分别是三角形底和高的一半。

  三角形的面积 = 长方形的面积×2

  =(底÷2×高÷2)×2

  = 底×高÷2

  2. 例1及“做一做”。

  编排意图

  应用三角形面积计算公式解决实际问题。例1是解答引入三角形面积计算时提出的问题:怎样计算红领巾的面积?

  “做一做”是计算一个直角三角尺的"面积,可以把两条直角边看作底和高。

  教学建议

  可以在学生独立完成的基础上进行交流与汇报,说说是怎样做的和计算的结果。注意检查计算中有没有忘记除以2,针对发生的错误,可以结合前面推导的过程,让学生说一说为什么要除以2?进一步加深印象。

  3.练习十六一些习题的说明和教学建议。

  第1、4、5题是应用问题,解决问题的过程中要应用三角形面积计算公式。其中第1题还可以进行交通常识的教育。这些标志牌表示的含义:

  注意危险 慢行 注意行人 向右急弯路

  第2题没有给出底和高的长度,要学生想办法求出每个三角形的面积。学生需要先找出或画出三角形的高,再分别量出底和高的长度。

  可先用小组合作形式完成或独立完成,再交流各自的做法。注意结合每种三角形的特点进行讨论。例如直角三角形以两条直角边为底和高计算最简便;钝角三角形一般会以最长的边作底,这样高就在三角形内。如果用水*的一条边作底,怎样找到高呢?可以让学生了解在钝角三角形短边上作高的方法(不作统一要求)。

  第3题根据乘除法的互逆关系灵活运用三角形面积计算公式。注意在根据三角形面积和高求底时,不要忘记三角形的面积先要乘2。

  第6题根据三角形面积计算公式,使学生理解三角形相等的基本条件是等底(两个三角形共底)和等高(*行线间的垂直距离都相等)。可以让学生先讨论:图中你能找到几个三角形?哪两个三角形面积相等呢?为什么?再根据等底等高三角形面积相等的道理,画出其他三角形。

  第7题是运用等底等高三角形面积相等的道理去分三角形。也可以用讨论的方式进行。

  分法一:

  将三角形任一边*均分成4段,把各分点与对应的顶点连接形成4个面积相等的三角形。

  分法二:

  连接三角形三条边的中点,形成的4个三角形面积相等。

  可以根据三角形中位线的性质证明出这4个三角形是等底等高。但学生还没有这些知识基础,可以通过测量证明每个三角形的底和高分别相等。

  第8*题是选作题。已知两个三角形的面积和高,可以分别求出它们的底长,也就是*行四边形的两条边长。

  540×2÷22?5=48(m)540×2÷18=60(m)

  因为*行四边形的对边相等,所以*行四边形的周长为

  (48+60)×2= 216(m)

  第9*题也是选作题。可以让学生根据三角形面积公式的推导和对三角形面积相等的判别知识进行推理。*行四边形的对角线把*行四边形分成两个相等的三角形,每个三角形面积是*行四边形面积的一半;A点是其中一个三角形底边的中点。根据等底等高三角形面积相等,涂色的三角形的面积是这个三角形面积的一半,也就是*行四边形面积的四分之一。所以涂色三角形的面积是 48÷4=12(m2)。

《三角形面积的计算》教案4

  教学内容:练习十九的第11~15题。

  教学目的:通过练习,使学生进一步熟悉*行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

  教具准备:将复习题中的*行四边形、三角形、梯形画在小黑板上。用厚纸做一个*行四边形、两个完全一样的三角形和两个完全相同的梯形。

  教学过程:

  一、复习了*行四边形、三角形、梯形面积的计算公式。

  出示下列图形:

  问:这3个图形分别是什么形?(*行四边形、三角形和梯形)

  *行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

  *行四边形的面积计算公式是怎样推导出来的?(教师出示一个*行四边形,让一学生说推导过程,教师边听边演示)

  三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

  为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个*行四边形的过程)

  梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

  梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个*行四边形的过程。)

  量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

  二、做练习十九中的题目。

  1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。

  2、第13题和第15题,让学生独立计算,做完后集体订正。

  3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?

  这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

  4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

  三、作业。

  练习十九第11题和第14题。

  课后小结:

《三角形面积的计算》教案5

  教学内容:

  教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。

  教学目标:

  1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

  2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

  教学重点:

  经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、教材第115页的三角形。

  探究方案:

  一、自主准备

  1.说一说:下面每个小方格表示1*方厘米,你知道涂色三角形的面积各是多少*方厘米吗?你是怎么想的?

  ()()()

  2.思考:

  (1)三角形的面积与它拼成的*行四边形的面积有什么关系?

  (2)有没有直接计算三角形面积的方法呢?

  (3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

  二、自主探究

  1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成*行四边形。

  2.填一填:你剪下的两个完全一样的三角形能拼成*行四边形吗?如果能,拼成的*行四边形的面积和每个三角形的面积各是多少?请填写下表。

  3.想一想

  (1)拼成*行四边形的两个三角形有什么关系?

  (2)拼成的*行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的*行四边形的面积呢?

  (3)根据*行四边形的面积公式,怎样求三角形的面积?

  三、自主应用

  试一试:完成书上第10页的“试一试”。

  四、自主质疑

  说一说:

  (1)三角形的面积公式是怎么推导的?你还有什么疑问?

  (2)你认为本节课应学会什么?

  教学过程:

  一、明确目标

  提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

  二、交流提升

  1.出示例4的方格图及其中的*行四边形。

  (1)全班交流:每个涂色的三角形的面积各是多少*方厘米?

  (2)小组交流:你是怎么得出每个三角形的面积的?说说你的想法。

  (3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出*行四边形的面积,再除以2得出三角形的面积。

  三角形的面积和*行四边形的面积会有什么联系呢?

  2.交流三角形面积公式的探究情况。

  (1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。

  小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的*行四边形的底和高各是多少?面积是多少?

  (2)全班交流:你有什么发现?(即例5下面的问题)

  (3)梳理、明确

  两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个*行四边形。

  这个*行四边形的底等于三角形的底,这个*行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的*行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2

  3.交流“试一试”

  (1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?

  (2)学生订正。

  三、巩固提升

  1.完成“练一练”的1、2两题。

  学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个*行四边形,三角形的面积和*行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)

  2.练习二第6题。

  学生独立完成,组织校对。

  3.练习二第7题。

  (1)多媒体出示第7题的方格图及*行四边形和三角形。

  (2)独立思考:你认为图中哪几个三角形的面积是*行四边形面积的一半?为什么?

  (3)小组交流:分别是怎么想的。

  (4)全班交流、总结

  可以通过计算,判断三角形的面积是不是*行四边形面积的一半,也可以把三角形的底和高与*行四边形逐一比较,很快作出判断。

  4.练习二第8、9题。

  (1)学生独立完成,再交流想法。

  (2)学生订正。

  四、总结延伸

  本节课你有什么收获?还有什么疑问?

  板书设计:

  三角形的面积计算

  两个完全一样的三角形都可以拼成一个*行四边形。

  *行四边形的面积=底×高

  2倍一半

  三角形的面积=底×高÷ 2

《三角形面积的计算》教案6

  教学内容:人教版9册 三角形面积公式推导部分

  教学目的:

  1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

  2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

  3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

  教学过程:

  一、阅读质疑。

  先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

  1厘米

  学生阅读后首先回顾了*行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

  (1)数方格怎么求三角形的面积?

  (2)不数方格怎么求三角形的面积?有没有一个通用公式?

  (3)能把三角形也转化成我们学过的图形求面积吗?

  (4)转化成的这些图形跟三角形有什么关系吗?

  (析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)

  二、点拨激思

  1。数方格的问题

  学生根据学习材料可以解答用数方格的方法求三角形的面积。

  老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

  学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

  嗯,看来数方格求面积是有一定局限性的, 今天我们就来研究三角形的面积。

  (析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

  2。转化的问题

  你想把三角形转化成什么图形?学生会转化成*行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

  师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

  (析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

  三、探索解疑

  学生操作,讨论,汇报。

  1。转化的图形

  学生的答案有很多种,把两个完全一样的三角形转化成了*行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

  2。 解决转化前后图形间的关系

  (1)大小的关系

  通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S = S÷2。一个三角形转化成的图形跟三角形关系是S =S

  (2)底和高的关系

  拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

  生1:两个完全一样的锐角三角形转化成了*行四边形,三角形的高就是*行四边形的高,三角形的底就是*行四边形的底。因为*行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2

  师:思路真清晰,为什么÷2,谁还想说。

  (学生依次讲拼成的长方形,正方形这两种情况)

  (3)公式推导

  师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

  生:底×高÷2

  师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

  生:S=a×h÷2

  (4)推导拓展

  师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

  学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

  学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

  生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2

  师:这个方法怎样,谁来评价一下。学生评价,太棒了。

  生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2

  (析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

  <三>归纳小结

  出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

  (析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

  总析:本节课有以下两个特点

  1。 充分体现了“问题意识的培养”。

  老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

  2。重视研究问题的过程。

  这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

《三角形面积的计算》教案7

  教学内容:练习十九的第11~15题。

  教学目的:通过练习,使学生进一步熟悉*行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

  教具准备:将复习题中的*行四边形、三角形、梯形画在小黑板上。用厚纸做一个*行四边形、两个完全一样的三角形和两个完全相同的梯形。

  教学过程:

  一、复习*行四边形、三角形、梯形面积的计算公式。

  出示下列图形:

  问:这3个图形分别是什么形?(*行四边形、三角形和梯形)

  *行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

  *行四边形的面积计算公式是怎样推导出来的?(教师出示一个*行四边形,让一学生说推导过程,教师边听边演示)

  三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

  为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个*行四边形的过程)

  梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

  梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个*行四边形的过程。)

  量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

  二、做练习十九中的题目。

  1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。

  2、第13题和第15题,让学生独立计算,做完后集体订正。

  3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?

  这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

  4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

  三、作业。

  练习十九第11题和第14题。

  课后小结:

《三角形面积的计算》教案8

  教学目标

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点

  理解三角形面积公式的推导过程.

  教学过程

  一、复习铺垫.

  (一)教师提问:我们学过了哪些*面图形的面积?计算这些图形面积的公式是什么?

  教师:今天我们一起研究“三角形的面积”(板书课题)

  (二)共同回忆*行四边形面积的计算公式的推导过程.

  二、指导探索

  (一)数方格面积.

  1.用数方格的方法求出第69页三个三角形的面积.(小组内分工合作)

  2.演示课件:拼摆图形

  3.评价一下以上用“数方格”方法求出三角形面积.

  (二)推导三角形面积计算公式.

  1.拿出手里的*行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计

  算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出

  三角形面积公式吗?为什么?

  ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行 四边形

  的面积有什么关系?

  4.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、*移)

  教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?

  5.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  6.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的*行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  (三)教学例1.

  例1.一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米.这个三角形的面积是多少*方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  5.6×4÷2=11.2(*方厘米)

  答:这个三角形的面积是11.2*方厘米.

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  (3)把三角形转化成已学过的图形,还有别的方法吗?

  (演示课件:三角形剪拼法)

  四、反馈练习

  (一)下面*行四边形的面积是12*方厘米,求画斜线的三角形的面积.

  (二)计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  3.底是1.8米,高是.1.2米;

  五、板书设计

  教案点评:

  本节课的主要特点是:1、重视知识形成的过程,注意引导学生积极参与教学过程,突出了以学生为主体,老师为主导的教学指导思想。2、注意渗透转化的思维方法和*移的思想,抓住新旧知识的衔接点和新知的生长点,形成良好的认知结构,同时培养了学生的逻辑思维能力。

  探究活动

  三角形面积计算公式

  活动目的

  1.掌握三角形面积公式的推导过程.

  2.培养学生主动探究知识的能力.

  活动准备

  若干张长方形和三角形白纸.

  活动过程

  1.引导学生以长方形的一条边为三角形的底,画一个最大的三角形,观察三角形面积与长方形面积的关系.

  2.引导学生用两个同样的三角形沿着其中一个三角形的高剪开,拼成一个长方形,观察三角形面积与长方形面积的关系.

  3.启发学生将三角形折成两个长方形,并观察三角形面积与长方形面积的关系.

  4.分小组讨论这种方法与新课所学三角形面积公式推导过程的异同点.

《三角形面积的计算》教案9

  第一课时

  教学内容:

  三角形面积的计算(例题、做一做和练习十七第1~4题。)

  教学要求:

  1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

  2。通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

  3。引导学生运用转化的方法探索规律。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教学过程:

  一、激发

  1.出示*行四边形

  1。5厘米

  2厘米

  提问:

  (1)这是什么图形?计算*行四边形的面积我们学过哪些方法?(板书:*行四边形面积=底高)

  (2)底是2厘米,高是1。5厘米,求它的面积。

  (3)*行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然长方形、正方形、*行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)

  二、尝试

  1.用数方格的方法求三角形的面积。

  (1)指名读P。69页第一段。

  (2)订正数的结果。

  (3)如果不数方格,怎样计算三角形的面积,能不能像*行四边形那样,找出一个公式来?

  (4)三角形与*行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。

  2.用直角三角形推导。

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和*行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?

  引导学生得出:每个直角三角形的面积等于拼成的*行四边形面积的的一半。

  面积=面积的一半

  3.用锐角三角形推导。

  (1)两个完全一样的锐角三角形能拼成*行四边形吗?学生试拼。

  提问:你发现了什么?

  引导学生得出:两个完全一样的锐角三角形也可以拼成*行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了*行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)

  ①把两个锐角三角形重叠放置。

  提问:怎样操作才能拼成一个*行四边形?直接把一个三角形向左或向右*移,能拼成一个*行四边形吗?

  ②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。

  ③再把右边的三角形向上沿着第一个三角形的右边*移,直到拼成一个*行四边形为止。

  (3)教师带着学生规范地操作。

  重点指导:哪点不动?哪点动?旋转多少度?怎样*移?转化的过程中旋转和*移有什么不同?(*移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)

  (4)对照拼成的图形,你发现了什么?

  引导学生得出:每个锐角三角形的面积等于拼成的*行四边形面积的一半。

  板书:

  面积=面积的一半

  (5)练习十八第1题。

  ①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

  ②通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的*行四边形面积的面积的一半。

  面积=面积的一半

  4.归纳、总结公式。

  (1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个*行四边形。

  ②每个三角形的面积等于拼成的*行四边形面积的一半。

  (同时板书)

  ③这个*行四边形的底等于三角形的底。(同时板书)

  ④这个*行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

  板书:三角形面积=底高2

  (4)完成书空。

  5.教学字母公式。

  (1)学生看书71页上面3行。

  (2)提问:通过看书,你知道了什么?

  引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  S=ah2。(板书)

  三、应用

  1。教学例题:一种零件有一面是三角形,三角形的底是5。6厘米,高是4厘米。这个三角形的面积是多少*方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要除以2?

  2。做一做。

  订正时提问:计算时应注意哪些问题?

  3.填空。

  两个完全一样的三角形可以拼成一个(),这个*行四边形的底等于(),这个*行四边形的高等于(

  )。因为每个三角形的面积等于拼成的*行四边形的面积的(),所以()。

  4.练习十七第2、3题。

  5.利用公式求P。75页方格上的三角形的面积。

  四、体验

  今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

  五、作业

  练习十七4题。

  第二课时

  教学内容:

  三角形面积计算的练习(练习十七5~10题)

  教学要求:

  1。是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2。能运用公式解答有关的实际问题。

  3。养成良好的审题、检验的习惯,提供正确率。

  教学重点:

  运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:

  投影

  教学过程:

  一、基本练习

  1。填空。

  ⑴三角形的面积=,用字母表示是。

  为什么公式中有一个2?

  ⑵一个三角形与一个*行四边形等底等高,*行四边形的底是2。8米,高是1。5米。三角形的面积是()*方米,*行四边形的面积是(

  )*方米。

  二、指导练习

  1。练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来

  2。练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?

  分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是222=2*方厘米。

  3。练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少*方米,大约是多少公顷。

  分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400602=12000(*方米)=1。2公顷。

  三、课堂练习

  练习十七第6、8题。(分组完成)

  四、作业

  练习十七第9、10题。

《三角形面积的计算》教案10

  教学目标

  1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2、培养学生观察能力、动手操作能力和类推迁移的能力。

  3、培养学生勤于思考,积极探索的学习精神。

  教学建议

  教材分析

  本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和*行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。

  本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过*移、旋转分别拼摆成*行四边形,通过发现每个三角形与拼成的*行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。

  本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。

  教法建议

  教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习*行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。

  在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想*行四边形面积公式的推导过程,启发提问:能不能也把今天学习的三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有*行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。

  本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。

推荐访问:角形 教案 面积计算 《三角形面积计算》教案【10篇】 《三角形面积的计算》教案1 求三角形面积的教案
上一篇:2023年一年级体育教案学情分析3篇
下一篇:《光》教案【10篇】

Copyright @ 2013 - 2025 韵智公文网 All Rights Reserved

韵智公文网 版权所有 备案号:冀ICP备16002157号-5