小学奥数练习题及答案3篇
来源:公文范文 发布时间:2023-01-11 08:10:32 点击:
小学奥数练习题及答案1 1。幼儿园的老师给每个小朋友分糖果,每个小朋友分5个糖果,就多出22个糖果;每个小朋友分7个糖果,就少18个糖果,有几个小朋友和多少个糖果? 2。学校春游,租了几条船让学下面是小编为大家整理的小学奥数练习题及答案3篇,供大家参考。
小学奥数练习题及答案1
1。幼儿园的老师给每个小朋友分糖果,每个小朋友分5个糖果,就多出22个糖果;每个小朋友分7个糖果,就少18个糖果,有几个小朋友和多少个糖果?
2。学校春游,租了几条船让学生们划船,每条船坐3人,则有20人没有船坐;如果每条船坐5人,恰恰安排好,问共有学生多少人?共租了多少条船?
1。解答:解:(22+18)÷(7—5)
=40÷2
=20(人);
5×20+22
=100+22
=122(块)。
答:有20个小朋友,122个糖果。
2。解答:解:20÷(5—3)
=20÷2
=10(条);
3×10+20
=30+20
=50(人)。
答:共有学生50人,共租了10条船。
小学奥数练习题及答案2
1.乘法原理
王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?
解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.
2.乘法原理
由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.
解:由1、2、3、4、5、6共可组成
3×4×5×3=180
个没有重复数字的四位奇数.
小学奥数练习题及答案3
1.765×213÷27+765×327÷27
2.(9999+9997+…+9001)-(1+3+…+999)
3.19981999×19991998-19981998×19991999
1.765×213÷27+765×327÷27
解:原式=765÷27×(213+327)=765÷27×540=765×20=15300
2.(9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000(500个9000)
=4500000
3.19981999×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
小学奥数练习题及答案3篇扩展阅读
小学奥数练习题及答案3篇(扩展1)
——奥数练习题答案3篇
奥数练习题答案1
编者导语:奥数让学生不拘泥于书本,不依常规,积极提出自己的新见解、新发现,有自己的新思路、新设计,在思考和解决问题时,思路更畅通、方法更灵活、很有深度。奥数对于发展学生的思维、培养学生的创新意识和实践能力是极为有效的。 为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:“符号谜”问题5,可以帮助到你们,助您快速通往高分之路!!
例5用六个9组成等于100的算式。
解:本题没有规定六个9的组合形式,因此,每一个数可以是9,也可以是99,或999……。各数间的运算符号也没有特殊要求,+、-、×、÷、()、〔〕、{}完全可根据自己需要选用,只要把六个9组合成算式使结果为100,便符合题目的要求了!因此,有时可以有许多种解法。
如,本题可组合为:
解1:99+99÷99=100
解2:(999-99)÷9=100
解3:9×9+9+9+9÷9=100
解4:99÷9×9+9÷9=100
奥数练习题答案2
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种 B 36种 C 59种 D 48种
解:
5全排列5*4*3*2*1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
3.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:快车从追上慢车的车尾到完全超过慢车就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲*均速度是每秒5米,乙*均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
5.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
6.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。
解:
由猎犬跑5步的路程,兔子要跑9步可知当猎犬每步a米,则兔子每步5/9米。由猎犬跑2步的时间,兔子却能跑3步可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
7. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分钟,乙需90分钟
故得解
8.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
9.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
10.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时
6*33=198千米
11.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
解:
把路程看成1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
奥数练习题答案3
计数问题
难度:
世界杯决赛圈共有32只球队参加,分为小组赛和淘汰赛两个阶段。第一阶段,每4支球队为一组,组内每两个球队都要比赛一场,前两名晋级第二阶段,并最终决出一、二、三名。请问,世界杯决赛圈共要进行多少场比赛?冠军球队要参加多少场比赛?
难度:
在所有的三位数中,各位数字之和是19的数共有多少个?
答案翻页查看
计数问题
难度:
世界杯决赛圈共有32只球队参加,分为小组赛和淘汰赛两个阶段。第一阶段,每4支球队为一组,组内每两个球队都要比赛一场,前两名晋级第二阶段,并最终决出一、二、三名。请问,世界杯决赛圈共要进行多少场比赛?冠军球队要参加多少场比赛?
【答案】
比赛型问题分为单循环、双循环和淘汰赛三种。
第一阶段为单循环赛,每小组4队,共8组;每两个球队之间均比赛一场,
=4×3/2=6场,即每一小组6场比赛,每支球队均有3场。此阶段共举行了8×6=48场比赛,冠军参加3场。
第二阶段为淘汰赛,共16支球队,两两一组比赛,第一轮淘汰8支球队,剩8支;第二轮淘汰4支球队,剩4支;第三轮淘汰2支球队,剩两支,第四轮淘汰1支球队,剩1支,为冠军。此阶段共举行8+4+2+1=15场比赛(淘汰赛,最终淘汰15支球队,每场淘汰一支),冠军参加4场。
此外,淘汰赛第三阶段的两支淘汰球队之间还要进行一场,决出第三名。
所以,世界杯决赛圈,共进行48+15+1=64场比赛,冠军球队参加7场。
难度:
在所有的三位数中,各位数字之和是19的数共有多少个?
【答案】
枚举法。
百位为9时,十位+个位=10,1+9,2+8,…,9+1共9种;
百位为8时,十位+个位=11,2+9,3+8,…,9+2共8种;
百位为7时,…… 共7种;
……
百位为1时,十位+个位=18,9+9,共1种;
由此得到,共9+8+7+…+1=45种。
小学奥数练习题及答案3篇(扩展2)
——奥数练习题参考答案3篇
奥数练习题参考答案1
例4在下式合适的位置添上()、〔〕和(),使等式成立。
1+2×3+4×5+6×7+8×9=9081
解:本题的最后结果是9081,数目较大,求解有一定难度,但仍可用“层层剥笋”的方法,缩小推导范围。
将9081分解得:
9081=1009×9
因此,{}位置可定,即:
{ }×9=9081
1009-8=1001。而1001=7×ll×13=77×13。据此,可将8前的"算式用添括号的方法,使它成为结果为77和13相乘的两个算式。经试算,
(1+2)×3+4=13(5+6)×7=77
从而,可以确定各种括号的位置。即:
{〔(1+2)×3+4〕×(5+6)×7+8}×9=9081
小学奥数练习题及答案3篇(扩展3)
——小学奥数与计算练习题及答案
小学奥数与计算练习题及答案1
数一数,图2-1和图2-2中各有多少黑方块和白方块?
解:仔细观察图2-1,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8行,所以:
黑方块是:4×8=32(个)
白方块是:4×8=32(个)
再仔细观察图2-2,从上往下看:
第一行白方块5个,黑方块4个;
第二行白方块4个,黑方块5个;
第三、五、七行同第一行,
第四、六、八行同第二行;
但最后的第九行是白方块5个,黑方块4个.可见白方块总数比黑方块总数多1个.
白方块总数:5+4+5+4+5+4+5+4+5=41(个)
黑方块总数:4+5+4+5+4+5+4+5+4=40(个)
再一种方法是:
每一行的白方块和黑方块共9个.
共有9行,所以,白、黑方块的`总数是:
9×9=81(个).
由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个.
小学奥数练习题及答案3篇(扩展4)
——整数拆分奥数练习题 (菁选2篇)
整数拆分奥数练习题1
1、把50分拆成10个素数之和,要求其中最大的素数尽可能大,那么这个最大的素数是几?
2、把17分拆成若干个互不相等的质数之和,这些质数的连乘积最大是多少?
3、一个自然数,可以分拆成9个连续自然数之和,也可以分拆成10个连续自然数之和,还可以分拆成11个连续自然数之和。这个自然数最小是几?
4、100这个数最多能写成多少个不同的自然数之和?
5、有纸币60张,其中1分、1角、1元和10元各有若干张,问这些纸币的总面值是否能够恰好为100元?
6、有30个2分硬币和8个5分硬币,用这些硬币能构成的1分到1元之间的币值有多少种?
7、是否有若干个连续自然数,它们的和恰好等于64?
8、若干只外观相同的盒子摆成一排,小明把54个同样的小球放进这些盒子中后外出,小亮从每只盒子里取出一个小球,然后把这些取出的小球放进小球数最少的一个盒子中,再把盒子重新摆了一下。小明回来后仔细查看了每个盒子,却没有发现有人动过小球和盒子。那么一共有盒子多少只?
9、20xx以内凡能拆成两个或两个以上连续自然数之和的所有自然数之和是多少?
10、有一把长度为13厘米却没有刻度的.尺子,能否在上面画4条刻度线,使得这把尺子可以直接测量出1---13厘米的所有整厘米长度?
整数拆分奥数练习题2
把70表示成11个不同的自然数之和,同时要求含有质数的个数最多。
分析:先考虑把70表示成11个不同的自然数之和。因1+2+3+……+11=66,现在要将4分配到适当的加数上,使其和等于70,又要使这11个加数互不相等。先将4分别加在后四个加数上,得到四种分拆方法:
70=1+2+3+4+5+6+7+8+9+10+15
=1+2+3+4+5+6+7+8+9+14+11
=1+2+3+4+5+6+7+8+13+10+11
=1+2+3+4+5+6+7+12+9+10+11
再将4拆成1+3,把1和3放在适当的位置上,仅有一种新方法:
70==1+2+3+4+5+6+7+8+9+13+12
再将4拆成1+1+2或1+1+1+1或2+2,分别加在不同的位置上,都得不出新的分拆方法,故这样的分拆方法一共有五种。
显然,这五种分拆方法中含有质数的个数最多的是:
1+2+3+4+5+6+7+8+13+10+11
点金术:巧用举例和筛选法得出结论。
小学奥数练习题及答案3篇(扩展5)
——小学二年级奥数练习题
小学二年级奥数练习题1
1、王老师把同学们的画排成一行展览,从左边起第8张是方方的画,从方方的画开始再往右数还有8张一共展出了多少张画?
2、一本书共100页,从前面数第30页是一幅漂亮的插图,如果倒过来数这张插图是第几页?
3、30个小朋友排队去参观,*均分成2队小华排在第一队,她的前面有3人,她的后面有几人?
4、20只小动物排一排,从左往右数第16只是小兔,从右往左数第10只是小鹿,求从小鹿数到小兔,一共有几只小动物?
5、二(2)班同学排成6列做早操,每列人数同样多小红站在第一列,从前面数,从后面数都是第5个二(2)班一共有多少个同学在做操?
6、小王用围棋子摆成了一个方阵不论从前往后数,从后往前数,还是从左往右数,从右往左数,正中心的一颗棋子都排在第4算一算,这个围棋子摆的方阵共用了多少个棋子?
7、二年级团体操表演中,小红站的位置是,从前往后数她是第5个,从后往前数她是第7个,从左往右数她是第2个,从右数往左她是第4个,这个方队一共有多少个同学?
8。林林今年8岁,爸爸比他大26岁,三年前,小亮比爸爸小多少岁?
9、小亮的.表哥今年18岁,小亮6岁。5年后,表哥比小亮大几岁?
10、妹妹今年6岁,哥哥今年15岁,哥哥21岁时,妹妹几岁?
11、欢欢今年12岁,甜甜4年后的年龄和欢欢2年前的年龄相等,甜甜今年几岁?
小学奥数练习题及答案3篇(扩展6)
——小学奥数加法原理练习题
小学奥数加法原理练习题1
1、两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?
分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。
因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。
2、用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?
分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。
当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有
5×4×3×3=180(种)。
当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有
5×4×3×2×2=240(种)。
再根据加法原理,不同的染色方法共有
180+240=420(种)。
小学奥数练习题及答案3篇(扩展7)
——小考卷数学练习题及答案
小考卷数学练习题及答案1
一、选择题(每空1分,共20分)
1、已知小圆的半径是2cm,大圆的直径是6cm,小圆和小圆的周长之比为( ),面积的比是( )。
2、12的因数有( )个,选4个组成一个比例是( )。
3、一幅地图的比例尺是1:40000000,把它改成线段比例尺是( ),已知AB两地的实际距离是24千米,在这幅地图上应画( )厘米。
4、3时整,分针和时针的夹角是( )°,6时整,分针和时针的夹角是( )°。
5、一个比例的两个内项分别是4和7,那么这个比例的两个外项的积是( )。
6、用圆规画一个直径是8cm的圆,圆规两脚尖的距离是( )cm,这个圆的位置由( )决定。
7、一个数,如果用2、3、5去除,正好都能被整除,这个数最小是( ),如果这个数是两位数,它最大是( )。
8、如果一个长方体,如果它的高增加2cm就成一个正方体,而且表面积增加24cm2,原来这个长方体的表面积是( )。
9、一个三位小数四舍五入取近似值是2.80,这个数最大是( ),最小是( )。
10、打一份稿件,甲单独做需要10小时,乙单独做需要12小时,那么甲、乙的工效之比是( ),时间比是( )。
11、一个正方体的棱长总和是24cm,这个正方体的表面积是( )cm2,体积是(
)cm3。
二、判断题(每题1分,共10分)
1、两根1米长的木料,第一根用 米,第二根用去 ,剩下的木料同样长。( )
2、去掉小数0.50末尾的0后,小数的大小不变,计数单位也不变。( )
3、一个三角形中至少有2个锐角。( )
4、因为3a=5b(a、b不为0),所以a:b=5:3。( )
5、如果圆柱和圆锥的体积和高分别相等,那么圆锥与圆柱的底面积的"比是3:1。( )
6、10吨煤,用去了一半,还剩50%吨煤。( )
7、一组数据中可能没有中位数,但一定有*均数和众数。( )
8、含有未知数的式子是方程。( )
9、一个数乘小数,积一定比这个数小。( )
10、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的 。( )
二、选择题(每题2分,共10分)
1、在长6cm,宽3cm的长方形内,剪一个最大的半圆,那么半圆的周长是( )cm。
A 9.42 B 12.42 C 15.42
2、有一堆水泥,运走 ,还剩 吨,这堆水泥共有( )吨。
A B 1 C 4
3、下面各组线段不能围成三角形的是( )。
A 3cm 、 3 cm 和 3cm B 1cm 、2cm 和 3cm C 6cm 、8cm和 9cm
4、把4根木条钉成一个长方形,再拉成一个*行四边形,它的( )不变。
A 周长 B 面积 C 周长和面积
5、把圆柱的侧面展开,将得不到( )。
A 长方形 B 正方形 C梯形 D *行四边形
四、计算题(共 25 分)
1、直接写得数。(5分)
9.6÷0.6= 0.5÷0.02= + = 3.14×22= - =
4-4÷6= 3÷10%= 0.125×8= ÷ = 13.5÷9=
2、脱式计算。(共12分)
3.25÷2.5÷4 5 ×0.5÷5 ×0.5 (0.8+ )×12.5
86.27-(28.9+16.27) 2 - - 1.6×[1÷(2.1-2.09)]
三、解方程(共8分)
4(2x-8)=24.4 x- x=1 :x= : 5x-4.5×2=
五、操作(共10分)
1、经过点P分别画OA的*行线和OB的垂线. 2、这是一个直径4厘米的圆,请在
圆内画一个最大的正方形,并计算
正方形的面积占圆的百分之几?
六、解决问题(共25分)
1、一个绿化队修理草坪,用去了900元钱,比原来节省了300元钱,求节省了百分之几?
2、信誉超市运来480千克水果,其中苹果占 ,3天卖出苹果总数的 ,求*均每天卖出苹果多少千克?
3、一箱圆柱形的饮料,每排摆4个,共6排,这种圆柱形的饮料的底面直径是6.5cm,高是12cm。这个纸箱的体积至少是多少立方分米?
4、在一幅比例尺是1:20000000的地图上,量得甲、乙两地长5cm,如果把它画在比例尺是1:25000000的地图上,应画多少厘米?
5、现在把一堆小麦堆成圆锥形,已知它的底的周长是12.56m,高是1.2m。已知每立方米小麦重750千克,求这堆小麦共重多少千克?
推荐访问:练习题 奥数 答案 小学奥数练习题及答案3篇 小学奥数练习题及答案1 小学奥数题以及答案